
PMM U.S.S.R.,Vo1.54,No.5,pp. 719-724,199O 0021-8928/90 $lO.OO+O.OO 
Printed in Great Britain 01991 Pergamon Press plc 

AN ASYMPTOTIC SOLUTION OF A CLASS OF COUPLED EQUATIONS* 

S.M. AIZIKOVICH 

We consider a class of coupled equations that is a generalization of a class studied 
earlier /l/.Such equations appear, in particular, when solving composite problems in elasticity 
theory for non-uniform bodies /2-5/. We define equations for which the approximate sol- 
utions, constructed using the method described in /l/ by reducing the problem to a finite 
system of algebraic equations, is two-sided asymptotically exact in terms of the character- 
istic geometric parameter of the problem. As an example we consider integral equations 
generated by Fourier and Hankel transformations. 

1. Suppose we are given an integral transformation 

b R 

g (z) = 1 G (y) B (y, z) dy, G (Y) = s g (8 * b’s 5) ‘g 
a a 

(i .I)% 

or an expansion 

m 
g(L) = r, G,B (v,. =)p G, = 8(e) A'(&' f)dS (1.2) 

k=Ll a 

and the function B(y,s) is a SOhtiOn Of a linear differential equation of second order in 5: 

have 
some 

(L - y’) B (y, z) = 0, L,B = r (I) [I (z) B’l’ + t (2) B (a < z < b) . (1.3) 

Here S(Z)> 0 for T E (a, b) and the function T(Z) has constant sign for ZE(Q, b). 

Suppose also that the functions B and B' are bounded as z--r b, and that at Z= a we 
cr,B + CQ' = 0. Furthermore, the numbers or constitute a denumerable set of roots of 
transcendentas equation with a < YL. < YR+~ < b. 
We assume that Eq.Il.3) satisfies the conditions of Fuchs's theorem /6/, i.e. the coef- 

ficient p1 (5) Of &‘;/d&’ has the form (z-a)-"P,(z--a), where the function P,(z- a) is 
holomorphic in the domain of the point cr; (the condition of Fuchs's theorem is necessary and 
sufficient for Eq.(1.3) to have two independent integrals that are regular in the domain of 
the point a). 

We consider a coupled integral equation (a coupled series equation) 

s '?(Y) P(Y) A (y.h) B(Y, 2) dA (v) = f(z), c < z \i d 

j Q (Y) B (v 2) dh (v) = 0. a<r<c, d <z < fi 

where for (1.1) the function h(y)zy, while for (1.2) 

Here the function p(v) is such that for K(hy)= i we know the solution of Eq.(1.4). 
Suppose /2/ 

K (7) = A + By + v (3). y-0; A (u) = 1 + DY-'+ v(r-Y. y- 00 - 

Definition 1.1. The function K(y) belongs to one of the classes II,(Z, and 
whichhave the forms 

‘N, M) 

(1.4) 

(1.6) 
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Here A,,B1 (i = l,Z,...,N),Ck,Dk(k = f,...,M) are certain constants. 
We have Theorem 1.1 /3/: given the condition that the function K(y) satisfies the 

properties (1.6), it can be approximated by expressions of the form 

K (hy) = A, (W i &s (by). 

In accordance with (l.l), 

(1.7) 

(1.8) 

(‘.9) 

(1.10) 

(1.11) 

Substituting (1.11) into (1.4), we obtain 

g (5) P (Y) K (Q) N (us f) B (P, 5) Wh (Y) = i (I), c < 2 d d. (1.12) 

Below, the integral operator corresponding to the function K(y) belonging to the class 
X will also be denoted by X. 

Using (l.lO), we rewrite (1.12) in operator form 

U,q+Z&=f. (1.13) 

In (1.13) the operator II, corresponds in (1.10) to the function A(y) of form (1.7), 
and 2, to the function A (Y) of the form (1.8). 

Definition 1.2. We shall say that Eq.(1.4) satisfies condition A if for K(~)E nN one 
can construct a closed solution, following /l/. We shall denote this solution by 

4 = q-'f, z E (c, d). (1.14) 

In other words, condition A means that for the function f(z), belonging to some class 
B' (c. d), there exists a function q(z), belonging to some class V (c, d), such that the equality 
(1.4) is true. 

From the representation (1.14) it follows that 

11 4 ilv(r, d) < m (nN) 11 f f;W(e, d)> m (nN) = const. 

Below we shall use m(X) to denote some constant that depends on the specific form of the 
function X. 

2. On the basis of the Hahn-Banach theorem /7/ we shall show that, if certain conditions 
are satisfied, expression (1.14) is an asymptotically exact solution of Eq.(1.13) as h-0 
and h-m. 

As a preliminary we consider the question of the existance and uniqueness of the solution 
of the coupled Eqs.(1.4) for functions K (Y) belonging to class s,,,; in this case it can 
be written in the form 

U,q+Z,,#=f. (2.1) 

We shall determine the conditions under which the operator UN-LZN of Eq.(1.4) is a 

contraction operator /7/. For this we use the following assertion. 

Lema 2.1. If VP(V)=~-'(y),M(y,+)=B(y,2), and a is a real number, then the bilinear form 

can be written in the form 

a& 4 = 
B_(ia, E) B+ (ia, 5). I < 2 
B, (ia, E)B_(ia, 5), z <E 
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where B_ (ia, 5) and E, (ia,z) are linearly independent solutions of Eq.(1.3) such that B-(ia,%)- 
0 and B+(ia,%)+m as a+ 30. 

The assertion of Lemma 2.1 is proved by putting 
Without loss of generality we put M= i 

in (2 1:'=i= 
in Lemma 28.1 in reference /8/. 

. . 

Lemma 2.2. If Eq.(1.4) satisfies condition A and the conditons of Lemma 2.1, then the 
operator Z,q in (2.1) can be represented in the form of a series /9/, (Z1q corresponding 

to K," (1~)): 

d 

c (0) 5 Q (5) B (Y,, 5) d% - 
c 

(2.2) 

Wb= (A, B) = A (a, b) B’ (yr, b) - R (yk, b) A’ (a, 6). 

Here Y~,Y~,...,J~,,... is the set of all eigenvalues of problem (1.3) with associated 
boundary conditions, B(yr,s) are the corresponding normalized eigenfunctions, and C (a) is 
a bounded constant, fixed for each equation in (1.3), connected with the Wronskian determinant 

W (B+,B- of the functions B+(~,z) and B_ (a, z) by the relation 

W [B, (a. z), B- (a, a-)1 = C (a)~-' (2). 

To prove Lemma 2.2 we write down the representation of the expansion coefficients fir: 

(2.3) 

Using Lemma (2.1) and a well-known property of solutions of second-order differential 
equations /lo/ 

d 

s B(a, z)B(ib, z) 

r (4 
dz = E’ (‘4 z) B (ib, 2) -B (a. z) B’ (ib, z)) I:’ e 

where B (a, Z) and B (ib, z) are any two solutions of Eq.(1.3) corresponding to y= D and y = lb, 

the second expression (2.3) can be rewritten in the form 

Al,@, %)=+ 
1 

s (2) B_(a, 5) [B, (., 2) B' (u,> z) - B (v,, z) B+'(G 411 E, % < 2 

s (2) B, (a, 5) [B.. (8, z) B’ (v,s z) - B (v,. 2) B-’ (a> s)l I ‘& z <% 

from which the assertion of Lemma 2.2 follows. 

3. We consider Eq.(1.3) and put y(s)=B(s)I/s). We obtain the equation 

Y” - y”q (4 Y = 0; 9 (z) = p (z) - El (z) y-a 
P (4 = w-‘7 R (2) = t (rs)_1 - S" (2s)' + I& (S'S_I)* 

(3.0 

for y (I). 

Lenma 3.1. When the conditions of Lemma 2.2 are satisfied the operator n,-lZD, of Eq. 

(1.4) is a contraction operator in the space V(c, d) if 1) the function q”(z) is continuous 
for z E (a, b), and 2) q(z)>0 for z E (a, b) when O<h<h* where h* is some fixed value for 
h. 

To complete the proof we will estimate the coefficients & in (2.2) in terms of h. We use 
the notation 

Ff (a, e) = BI (a, E) W,' (B*, B) (e = E, d) . 

According to Theorem 2 from /ll/, when conditions 1 and 2 are satisfied, Eq.(3.1) has a 
solution of the form 

y,,r (2. y) = q-1’4 (5) E* (4. 3) [I + Y%,B (2. v)l. (3.2) 
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The estimates 

I EI b. v) I d CT z E Ia, bl, Y > ~a > 0. I = 1, 2 (3.3), 

hold for the functions e1,2 where the constant c is independent of X and y. 
The asymptotic form of (3.2) can be differentiated, i.e. 

Y,,,' (2, v) = fvrl"' (z) E* (50. 2) (1 + v-N,, (z> v)), (3.4) 

where estimates of the form (3.3) hold for the functions E~.~. Using (3.2) and (3.4), and 
taking into account that y= D,h-l in (3.1) we deduce the following: because 
behaviour of the function F+(y, c) is determined by a multiplier of the form 

c<5, the 
E- (c, 8 and one 

can find a v0 such that F+(y, C) -0 for Y >Va > 0. 
As above, because d> 5, the existence of the multiplier E_(k,d) enables one to find 

a y0 such that F_(y,d)-0 for v>~~>O. 
Thus for 0 <h < & where (A, = D,y,-I), using the fact that the expansion coefficients 

(2.2) have the form (2.3) and that the functions B(~k,z) are orthonormalized, we obtain 
estimate 

where the constant M* does not depend on h. From this it follows that h can be chosen so 
that the operator UN+ZM is a contraction operator /I/ under the conditions of the present 
lemma. 

of 
the 

4. We shall investigate the conditions under which the solution (1.14) is an asymptoti- 
cally exact solution of Eq.(1.4) as h-m (~'0). To do this, following the scheme described 
earlier, we determine the conditions under which the operator nN-lZM of Eq.(1.4) is a con- 
traction operator. 

Throughout the following we shall assume that the solutions of Eq.(1.3) satisfy symmetry 
conditions: 

In agreement with condition (4.1) the behaviour of B(Y,Z) as y-0 is determined by 
the behaviour of the corresponding solution of Eq.(1.3) as z-0. 

We reduce Eq.(1.3) to selfconjugate form by multiplying it by the function r-1(x): From 
(1.3) we obtain 

$8 (v. 3) = IS (5) B'l' - Q (x) B = 0, s (2) > 0, a < z < b (4.2) 

Q (z) = [t (2) - ?a] r-1 (I) . 

We assume that the coefficients s(3) and Q(s) of Eq.(4.2) are analytic in the disk 
'IzI<R. Then any solution B(Z) of Eq.(4.2) are analytic in this disk, i.e. can be expanded 
in a power series converging inside the disk Isl<R /12/. 

Lenuna 4.1. The operator UN-lZM of Eq.(1.4) is a contraction operator in the space v(c,d) 

if the coefficients s(s) and Q(Z) of Eq.(4.2) are analytic on the disk Irl<R for h>h", 
where V is some fixed value of h, and if the symmetry condition (4.1) is satisfied. 

To prove the lemma we estimate the coefficients fiti in (2.2) in terms of 5. From the 
conditions of the lemma and the symmetry condition (4.1) it follows that one can find a ha 
such that for h>ha the solutions B*(a,z) can be represented in the form of power series 
in h-l, converging in the disk Ihl>h'. From this it follows that 

where the constant Ma does not depend on h. 
Thus h can be chosen so that the operator IIN-lZM is a contraction operator /I/ under 

the conditions of the present lemma (P = Ma). 
We shall consider separately the case of Eq.(4.2) when the point == 0 is a regular 

singular point, i.e. 

s (2) = z'p (Z)! 'p (0) # 0 (4.3) 
where q(z)> 0 is a continuous function in (a, bl. We note that the function S(I) of the 
form (4.3) satisfies the conditions of Fuchs's theorem. 

The following lemma holds (/13/, p.628): 
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Lemma 4.2. Suppose B+(z) and B_(r) are two linearly independent solutions of Eq.(4.2), 
whose coefficient s (2) satisfies condition (4.3). Then if B+(O)#O, B_(z) has a logarithmic 
singularity at Z= 0. If B+(z) has an n-th order zero (n>O) at z=o, then B_(z) has an 
n-th order pole at z=o. 

Lemma 4.3. Suppose that the coefficient S(I) of Eq.(4.2) has the form (4.3), that con- 
dition (4.1) is satisfied and that 

s (c)B (% c) = s (d) B hk, 4. 

In this case the operator IIN-'XM of Eq.(1.4) is a contraction operator in the space 
V (c, d) for h>ha, where ha is some fixed value of h. 

We shall C?StiIIIate the Coefficients flk in (2.2). From Lemma 4.2 and condition.(4.1) it 
follows that there exists a ha such that for h>A", if B, (O)#O, then 

(4.4) 

and if B+(s) has an 
replaced by M&-l. 

Based on Lemmas 
equation 

we obtain a proof of 
ditions imposed. 

n-th order zero at l!=o, then in estimate (4.4) M,h-lIna has to be 

3.1, 4.1, and 4.3, applying the contraction mapping principle to the 

the existence and uniqueness of the solution of Eq.(2.1) under the con- 

Thus we have proved the following theorem. 

Theorem 4.1. Eq.(1.4) is uniquely solvable in the space V(e,d) for K(y) of class SN,M 

when the conditions of Lemmas, 3.1, 4.1 or 4.3 are satisfied, and the estimate 

1’7 (‘) Ib(e, d) < m (‘N, ‘&f) 11 fW(e, d) (4.5) 

holds. 
We have furthermore the following theorem. 

Theorem 4.2. Eq.(1.4) is uniquely solvable in the space V(c, d) for K(y) possessing 
properties (1.6) for yp(y)= r-l(~) and satisfying condition A and conditions 1) and 2) from 
Lemma 3.1 if O<h<h', and also for h71a when the conditions of Lemma 4.1 or 4.3 are 
satisfied (h* and ha being some fixed values of h) and estimate (4.5) holds with BM replaced 

by =m. 
Theorem 4.2 follows from the assertions of Theorems 1.1 and 4.1 and is proved with the 

help of a trick used in perturbation theory, based on the method of successive approximations, 
as in /14/. 

5. Examples of representations of the form (2.2). 
1) t (z) = 0, r (5) = s (5) = const in (1.3) 

B (a, 5) = co9 a& B_ (iD, 5) = ‘&ID-’ exp (-DE) 

B, (iD, z) = ch Ds 

cnsknS--eap(--)oosknch~5]dS 

Here the conditions of Lemmas 3.1 and 4.1 are satisfied. The space V (c, d) 5 C$)+ (-1, 1). 

where C$'r (--1, 1) is the space of even functions that are continuous and have weight (i -zr)l/* 
with norm /la/ 

W Cc> 4 is the space of functions with first-order derivatives in the internal r--1,11 
satisfying the H&der condition with index 'ia+ 8, with the usual norm /14/. 

2) r (I) = z-1, S(Z)= Z, t(2) = --n%-* in (1.3) 

B (a, E) = I,, (czS), B_ (iD, 5) = K,, (DE), B+ (CD, 5) = 1, (Dz) (n = 0, 1). 

Here J,,(z) is Bessel function, and I,,(z) and K,,(z) are modified Bessel functions. We 
have 
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1 4 

(n = 0, i), where for R = 0 FCC, d)= C!/4" c--1, i), while for n = 1 F (c, d)3 C$'j- (-4, 1). where Cl;!- 

is the space of odd functions, continuous with weight (1 -x?'/~. The corresponding space 

W (c. d) is defined in /3/. 
Here, for n=O(n=f) the conditions of Lemma 3.1 are satisfied and estimate (4.4) holds 

(estimate (4.4) with M,h-‘lnh replaced by M&-l). 
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